第01版:要闻
下一版4
 
工信部党组理论学习中心组集体学习习近平总书记在党史学习教育动员大会上的重要讲话精神
工信部举行党史学习教育专题辅导报告会
肖亚庆主持召开国家制造强国建设领导小组车联网产业发展专委会第四次全体会议
5G就是云,电信运营商集体返场
芯片制造,日欧青睐2纳米
赛迪出版物官方店 微订阅更方便
在这里 让我们一起把握行业脉动
 
版面导航
 
3上一期
3上一篇  下一篇4 2021年4月2日 放大 缩小 默认        

芯片制造,日欧青睐2纳米

本报记者 陈炳欣
 

受贸易摩擦等多重因素的影响,全球的半导体大国均有意强化本国芯片制造能力。欧盟委员会在一项名为《2030数字指南针》计划中,提出生产能力冲刺2nm的目标。日本政府也于日前表示将出资420亿日元,联合日本三大半导体厂商——佳能、东京电子以及Screen Semiconductor Solutions共同开发2nm工艺。事实上,在台积电、三星这些半导体制造龙头的技术路线图中,2nm同样是需要集结重军突破的关键节点。那么,为何欧洲、日本均将重振芯片制造的突破点放在2nm上?2nm有何特殊之处?

2纳米是新的“大”节点?

晶圆制造作为半导体产业链的重要环节,发挥着基础核心作用。特别是随着5G、高性能计算、人工智能的发展,市场对先进工艺的需求越来越高。在台积电2020年财报中,第四季度采用最先进5nm工艺平台加工晶圆的销售额占总晶圆收入的20%,7nm和12nm/16nm的销售额分别占29%和13%。也就是说领先的5nm和7nm节点占台积电收入的49%,而高级节点(5nm、7nm、12nm/16nm)占该公司总收入的62%。

3nm是台积电和三星两大半导体制造巨头当前的发展重点,两家公司的量产计划均落在2022年。工艺尚在试产阶段,苹果公司已经为旗下M系列和A系列处理器预订采用这种技术的订单。先进工艺制造在半导体产业中的重要性,由此可见一斑。

2nm作为3nm之后的下一个先进工艺节点,也早早进入人们的视野。2019年,台积电便宣布启动2nm工艺的研发,使其成为第一家宣布开始研发2nm工艺的公司。同时,台积电将在位于我国台湾新竹的南方科技园建立2nm工厂,预计2nm工艺将于2024年进入批量生产。按照台积电的说法,2nm工艺研发需时4年,最快也得到2024年才能进入投产。在这段时间里,5nm工艺乃至3nm工艺均会成为过渡产品,以供客户生产芯片的需要。

半导体一向有“大小”节点之分。以28nm为例,与40nm工艺相比,28nm栅密度更高、晶体管的速度提升了约50%,每次开关时的能耗则减小了50%。在成本几乎相同的情况下,使用28nm工艺可以给产品带来更加良好的性能优势。2011年第四季度,台积电首先实现了28nm全世代工艺的量产。截至2014年年底,台积电是目前全球28nm市场中的最大企业,2014年的销售收入主要来源于28nm,占总营收的34%,占全球28nm代工市场份额的80%,产能达到13万片/月,占整个28nm代工市场产能的62%。业界认为,14nm、7nm或5nm也是大节点。

莫大康指出,由于2nm目前尚处于研发阶段,其工艺指标尚不清楚,不能轻易判断是否也一个大节点。然而根据台积电的工艺细节详情,3nm晶体管密度已达到了2.5亿个/mm2,与5nm相比,功耗下降25%~30%,功能提升了10%~15%。2nm作为下一代节点,性能势必有更进一步的提升,功耗也将进一步下降,市场对它的需求是可以预期的。这或许正是日本与欧洲在高调进军半导体先进制造之际,力求在2nm上取得突破的原因之一。

全面进入GAA时代?

2nm在技术上革新同样非常关键。根据国际器件和系统路线图(IRDS)的规划,在2021—2022年以后,鳍式场效应晶体管(FinFET)结构将逐步被环绕式闸极(GAA)结构所取代。所谓GAA结构,是通过更大的闸极接触面积提升对电晶体导电通道的控制能力,从而降低操作电压、减少漏电流,有效降低芯片运算功耗与操作温度。

目前,台积电、三星在5nm/7nm工艺段都采用FinFET结构,而在下一世代的晶体管结构选择上,台积电、三星却出现分歧。台积电总裁魏哲家在法说会上表示,3nm的架构将会沿用FinFET结构。台积电首席科学家黄汉森强调,之所以做此选择是从客户的角度出发。采用成熟的FinFET结构产品性能显然更加稳定。三星则选择采用GAA结构。在今年的IEEE国际固态电路大会(ISSCC)上,三星首次公布了3nm制造技术的一些细节——3nm工艺中将使用类似全栅场效应晶体管(GAAFET)结构。不过有消息爆出,台积电的2nm工艺将采用GAA架构。也就是说,2nm或将是FinFET结构全面过渡到GAA结构的技术节点。在经历了Planar FET、FinFET后,晶体管结构将整体过渡到GAAFET、MBCFET结构上。

此外,一些新材料在制造过程中也将被引入。新思科技研究人员兼电晶体专家Moroz表示,到了未来的技术节点,间距微缩将减缓至每世代约0.8倍左右。工程师们开始探索其他许多技术,以降低金属导线上的电阻率,从而为加速取得优势开启大门。其方式包括新的结构,例如跨越多个金属层的梯度和超导孔(super-vias),以及使用钴(Co)和钌(Ru)等新材料。

无论是结构上的创新还是新材料的引入,2nm是一个非常关键的节点。原有的很多技术难以满足要求,产业界需要从器件的架构、工艺变异、热效应、设备与材料等方面综合解决。欧洲、日本均将重振芯片制造的突破重点放在2nm上,目的显然是希望在技术革新的关键节点导入,实现“换道超车”,同时以此为契机向1nm甚至埃米领域推进。

面临技术与成本双重挑战

不过2nm的开发并不容易,随着摩尔定律走向物理极限,芯片的制造面临着技术与成本的双重瓶颈。根据莫大康的介绍,目前EUV光刻机的精度仍不足以满足2nm的需求。光刻技术的精度直接决定工艺的精度,对于2nm的先进工艺,高数值孔径的EUV技术还亟待开发,光源、掩模工具的优化以及EUV的良率和精度都是实现更先进工艺技术突破的重要因素。

日前,比利时微电子研究中心(IMEC)首席执行官兼总裁Luc Van den hove表示,该中心正在与ASML公司合作,开发更加先进的光刻机,并已取得进展。近年来,IMEC一直在与ASML研究新的EUV光刻机,目前目标是将工艺规模缩小到2nm及以下。目前ASML已经完成了NXE﹕5000系列的高NA EUV曝光系统的基本设计,至于设备的商业化,要至少等到2022年,而台积电和三星拿到设备还要在2023年。

来自制造成本的挑战更加严峻。有数据显示,7nm工艺仅研发费用就至少需要3亿美元,5nm工艺平均要5.42亿美元,3nm、2nm的工艺起步价大约在10亿美元左右。台积电3nm工艺的总投资约为500亿美元。目前在建厂方面至少已经花费200亿美元,可见投入之庞大。

“尽管欧洲与日本都表达了想要在下一个技术世代来临之际,以2nm为切入点,发展先进工艺的计划。但如果一旦投入,其势将面临用户从哪里来,如何平衡生产成本等问题。” 莫大康指出。

 
3上一篇  下一篇4  
  


电子信息产业网 http://www.cena.com.cn
中国电子报社版权所有。未经许可,不得转载或镜像。
地址:北京市海淀区紫竹院路66号赛迪大厦8层 邮编:100048
订阅电话:010-88558892 | 88558816

 

关闭